Hand gesture recognition using a real-time tracking method and hidden Markov models
نویسندگان
چکیده
In this paper, we introduce a hand gesture recognition system to recognize continuous gesture before stationary background. The system consists of four modules: a real time hand tracking and extraction, feature extraction, hidden Markov model (HMM) training, and gesture recognition. First, we apply a real-time hand tracking and extraction algorithm to trace the moving hand and extract the hand region, then we use the Fourier descriptor (FD) to characterize spatial features and the motion analysis to characterize the temporal features. We combine the spatial and temporal features of the input image sequence as our feature vector. After having extracted the feature vectors, we apply HMMs to recognize the input gesture. The gesture to be recognized is separately scored against different HMMs. The model with the highest score indicates the corresponding gesture. In the experiments, we have tested our system to recognize 20 different gestures, and the recognizing rate is above 90%. q 2003 Published by Elsevier Science B.V.
منابع مشابه
Real-Time Hand Tracking and Gesture Recognition System
In this paper, we introduce a hand gesture recognition system to recognize real time gesture in unconstrained environments. The system consists of three modules: real time hand tracking, training gesture and gesture recognition using pseudo two dimension hidden Markov models (P2-DHMMs). We have used a Kalman filter and hand blobs analysis for hand tracking to obtain motion descriptors and hand ...
متن کاملReal Time Hand Tracking and 3d Gesture Recognition for Interactive Interfaces Using Hmm
In this study we have developed a humancomputer interaction interface (HCI) based on real time hand tracking and 3D dynamic gesture recognition using Hidden Markov Models (HMM). We propose a system, which captures and recognizes hand gestures of the user wearing a colored glove, where the hand coordinates are obtained via 3D reconstruction from stereo. In recognition of eight defined gestures, ...
متن کاملHand Gesture Recognition Using Input-Output Hidden Markov Models
A new hand gesture recognition method based on Input– Output Hidden Markov Models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin–color blobs corresponding to the hand into a body– face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملRecognition of Alphabetical Hand Gestures Using Hidden Markov Model
The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction (HCI). In particular, visual interpretation of hand gestures can help achieve easy and natural comprehension for HCI. Many methods for hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network (NN), and hidden Markov model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 21 شماره
صفحات -
تاریخ انتشار 2003